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Land Use Modeling

 Land-use models are used in many fields
» Planning,
» Urban science,
 Ecological science,
 Climate science,
» Geography, _ S
» Watershed hydrology, Ottawa Dowrtown Taken from
» Environmental science,
* Political science, and
* Jransportation

Taken from
www.greateryellowstone.com




Why is Land Use Modeling Important?

e Used to examine future land-use scenarios
e Evaluate potential effects of policies

» Recently, substantial attention on
e Biodiversity loss,
o Deforestation consequences, and
e Carbon emissions increases caused by land-use development

e | and-use patterns constitute one of the most important “habitat” elements
characterizing Earth’s terrestrial and aquatic ecosystems
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Objectives

» Develop new econometric approach to specify and estimate a land-use change
model

« Capable of predicting both the type and intensity of urban development patterns
over large geographic areas

o Explicitly acknowledges geographic proximity-based spatial dependencies in these
patterns




Methodological Perspective

 Specification and estimation of a spatial multiple discrete-continuous probit
(MDCP) model

» Allows the dependent variable to exist in multiple discrete states with an
intensity associated with each discrete state

e Accommodates
e Spatial dependencies,
o Spatial heterogeneity,
» Heteroscedasticity, in the dependent variable

 Applicable where social and spatial dependencies between decision agents

(or observation units) lead to spillover effects in multiple discrete-
continuous choices (or states)



Empirical Perspective

* Model land-use in multiple discrete states

* Along with the area invested in each land-use discrete state,
within each spatial unit in an entire urban region

* Hybrid of three different strands of model types (pattern,
process and spatial-based models) used in the land-use analysis
literature
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Farlier Literature

e Three Modeling Approaches
o Pattern-based Models
* Process-based Models
» Spatial-based Models




Pattern Based Models

» Developed by geographers and natural scientists

« Well suited for land-use modeling over relatively large geographic extents (such as
urban regions or entire states or even countries)

« Unit of analysis: Aggregated Spatial Unit (Large grid, TAZ, Census Tract, County or
State)

e [wo types

e (Cellular automata-based Models

e Empirical models at aggregated spatial unit level




Cellular Automata-based Models

» Hypothesizes the nature of the deterministic or probabilistic updating functions
 Simulates the states of cells over many “virtual” time periods,

« Aggregates up the states of the cells at the end to obtain land-use patterns

e Limitations

« Updating functions not based on actual data = no direct evidence linking
the updating mechanism at the cell level to the spatial evolution of land-
use patterns at the aggregate spatial unit level

e Do not use exogenous variables such as socio-demographic characteristics
of spatial units, transportation network features, and other environmental
features—> Policy value is extremely limited



Empirical models at Aggregated Spatial Unit Level

» Relates transportation network, pedoclimatic, biophysical and accessibility
variables to land-use patterns

» Can be used in a simulation setting to predict land-use patterns in response to
different exogenously imposed policy scenarios

e Not formulated in a manner that appropriately recognizes the multiple
discrete-continuous nature of land-use patterns in the aggregated spatial units

Do not adequately consider population characteristics of spatial units in
explaining land-use patterns within that unit



Process-based Models

» Developed by economists

« Well suited for modeling landowners’ decisions of land-use type choice for their
parcels

« Unit of analysis: Land-owner is considered as an economic agent

» (Considers the human element in land-use modeling

« Forward-looking inter-temporal land use decisions based on profit-maximizing
behavior




Process-based Models

e Difficulties incorporating spatial considerations at this micro-level

« High data and computing demands when analysis is being conducted at the
level of entire urban regions or states in a country

* Presence of land-use and zoning regulations = Individual landowners may
not have carte blanche authority

« Multiple parcels under the purview of a single decision-making agent -
Multiple parcels in close proximity tend to get similarly developed




Spatial-based models

« Emphasis on spatial dependence among spatial units (in pattern-based models) or
among landowners (in process-based models)

« Caused by diffusion effects, or zoning and land-use regulation effects, or social
interaction effects, or observed and unobserved location-related influences

e Two most dominant spatial formulations = Spatial lag and spatial error formulations
e Spatial lag structure

» Considers spillover effects caused by observed exogenous variables at one spatial location
influencing land-use patterns in adjacent locations

» Generates spatial heteoscedasticity.




Spatial-based models

e Spatial heterogeneity = Differences in relationships between the
dependent variable and the independent variables across decision-
makers or spatial units in a study region

o Essential to accommodate local variations (/.e., recognize spatial non-
stationarity) in the relationship across a study region rather than settle
for a single global relationship
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Past Studies

In the past decade , much emphasis has been placed on accommodating
spatial correlation in binary/ordered models (spatial regression models,
weighted geographic regression, spatial probit and spatial tobit).

Estimation has mostly been done using simulation technigques (GHK and
Bayesian MCMC).

Standard RIS and MCMC-based simulators are cumbersome to implement in
typical empirical contexts



RECENT ADVANCES

e Spatial land use change model for unordered choice case, including spatial
lag dependency, random heterogeneity, and general covariance matrix.

* A new estimation technigue has been proposed (MACML, Bhat(2012)).



Transition

e Discrete choice field has moved forward from ordered/unordered cases to
multiple discrete-continuous models.

» A realistic representation of choices made in real-life.



Multiple discrete-continuous choice models
(MDC)

» Capable of accommodating multiple choices
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Utility function

k=1 aqk qk

K “u
max U, (x,) = Zq"z/fq{(xq"+1J —1]

U(x,) is a quasi-concave, increasing, and continuously differentiable function with
respect to the consumption quantity vector x

o, ¥ andy, are parameters associated with alternative k for decision maker ¢

Xu IS the consumption/investment value of outside alternative k




Utility function
* Roleof ¥

U (x X K
( qk):qu Lk‘l‘l

0x,,

Y . - baseline (at zero consumption/investment) marginal utility, should always be positive
X Investment/consumption value of an alternative & (inside good) by decision maker ¢

W i /qu . marginal rate of substitution at zero consumption

Higher baseline implies less likelihood of a corner solution for an alternative &

qu — eXp(Eqk’é:qk) — eXp(ﬂ;Eqk + qk) or Wq*k — In(qu) — ﬂ;qu + gk’




Utility function

* Role of ¥, (7, >0)

-,
xq2+1
Slope(x,,,x )=8U(xq)/aqu= o2 XW(qu)
T QU(x, )/ Ox,, T y(x,,)
|
yql

At x,=-y,, lope=co

At x_,=-7,,, slope=0
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Utility function

* Role of ¥, (7, >0)
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Utility function

* Role of @,

Utility Accrued Due to Consumption of Good k
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KKT first order condition (MDCP)

Since only differences in the logarithm of the baseline utilities matter, we subtract the logarithm of baseline
utility of outside alternative from k-1 inside alternatives and normalize the logarithm of the baseline utility
for the outside alternative to zero. Baseline utility is parameterized to ensure positive value of baseline utility

Baseline Utility

qu = In(‘?;k) o In(Vc;K) = ﬂ; (Eqk _EqK) + (qu _qu)
:ﬂ;zqk +8qk’ Sqk = Eqk _qu’qu = (é:qk _qu) Vk#K

W =InW,)-In(7,)=0 for k=K.
l//qk = eXp(qu)

b : mean estimate of B,

ﬂq ~MVN,(b,9Q) 0 : Covariance matrix for random coefficient
ﬂ — b+ E 'Eq - random coefficient standard deviation with
q q mean zero and covariance

~

B, ~MVN,(0,,Q)




KKT first order condition (MDCP) cont..

KKT first order conditions

. o1
eXp(b'zqk+ﬁ;zqk+€qk)(ﬁ+1] -4,=0 if x;k >0, k=12..K-1

k

* Ulk—l
~ x . . _
eXp(b’zqk+ﬂ;zqk+gq")[7i+1) ~4,<0if x,=0, k=12.,K-1

k
where 4 =(x, +7.S*" % is the investment value corresponds
to outside alternative K

Final KKT first order expression
y:]k — (qu _VqK)—l_qu = O Jif x;k > 0, k=12..,.K-1

* ~ . * — k: 2’,K_1
Y gk :(qu_VqK) +E, <0 Jif x,=0 k=1

.
where v, =b7,+( -1 In ~%L+1| for k=12.,K-1 . .
B2 (71( j v, : utility of the alternative k

Vo = 1 In(x, +7,) F =P+ e, . difference in the error between alternative k
o= =) o T and outside alternative K



KKT first order condition (SMDCP)

We introduce the spatial auto-correlation through baseline utility as follow:
W =Bz, + €y +5k2wqq, W for k=12,...,K-1
-
v, =0for k=K.

Following the steps of MDCP model, we can see that difference in utility is distributed with mean B and
covariance x

*

Y ~MVNyx (B,X)

Where B, :(’C,l—K,K,qu—K,K,---,K,,K_l—V;K)' [(K —1)x1 vector B =(B;,B;,....B,) [O(K-1)x1 vector]

V, =[S2b], +(e, 1) In[x—qk+1j for k=12,..,K-1 Vi = (0 =1 ln(x;K +7K) for k=K
T=S[A+Q]S" [O(K-1)xO(K —1) matrix] A=IDEN, ® A [O(K -)XQO(K —1) matrix]
Q= Z(IDEN , ® Q)7" [Q(K -1D)x Q(K —1) matrix] o and A are the random coefficient covariance

matrix and differenced error covariance
matrix, respectively




Ok

'z, 0 O 0 |
0O z 0 ... O
=10 0 z; ... 0] [O(K-1D)XOD matrix]
0 0 O %o
6, 0 0O 0]
0 6 O 0
0 0 o 0 | [(K-1)x(K -1 matrix]

W=(,,®d).* (W Q®IDEN,,) W isa(ox0) weight matrix with weight W

S=[IDEN, . . - W[* [O(K =) xO(K —1) matrix]

O(K-1)

q

as its e ements
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Model Estimation

Partition the vector y" into two sub-vector to represent chosen and non-chosen alternatives.

’

7 =(Gre] B2
We can retrieve y'fromy as follow: 7 =Ry’

Where, R is a re-arrangement matrix of dimension with zeros and ones

For example, consider the case of three grids and five land-use alternatives. The last alternative is the
“undeveloped” land-use state, which is the outside alternative. Among the remaining four alternatives, let
grid 1 be invested in alternatives 1 and 4 (not invested in alternatives 2 and 3), let grid 2 be invested in
alternatives 2 and 3 (not invested in alternatives 1 and 4), and let grid 3 be invested in alternative 1 (not
invested in alternatives 2, 3, and 4). Then, the re-arrangement R matrix is:



Model Estimation Cont..

O O O O Fr|OO0O o o o o o
©O O O Fr OO O O O O O O
©O Ok OO OO O O O O O
O r OO OO0 O O O O O o
P O O O OO O O O o o o
O O O O Ol OO OO O O

©O O O O O/l O Fr O O O O
O O O O OO0 OO O O O

©O O O O 0O 00 o o r O o
O O O O 0O 000 o r O o o

O O O O OO0 oo o o+
O O O OO0 o0o o o or o

With further re-arrangement, we can write the likelihood function as follow:

0
L,,,(0) = Prob(x") =det(d) | fox 1) (hyc-0, | B, E)dhy,

hyc=—ce

J :Jacobian
h,.: Number of non-chosen alternatives

det(J):ﬁ I1 1-a D Yo TV B and T are the mean and covariance matrix of
kel X gk + )/k kel 1- ak i i
e o< utility difference

Where

q=1



Model Estimation Cont..

» The likelihood function involves integration of dimension equal to number of non-chosen alternatives
 Very high dimensional integration

« Traditional simulation techniques such as Bayesian inference method and Maximum simulated likelihood
are not suitable

» We use Bhat's Maximum Approximate Composite Marginal Likelihood (MACML) inference approach.

CML function
L., (0)= Prob(x; : x;)

~

= IQ—_i ﬁ det(J qq’) X (aiqqgc )1 [¢qu',c (B ;q’,C ’ i*qq'vc )]X [¢qu',NC (B ;q',NC ’ i*qq”NC )]

q=1 q'=q+1

1-« X, +7
. . . .. - det ) = k Ik k
Where o is the diagonal matrix of standard deviation of £, (o) ,11 H,gx,*k +7, HE[ 1-«,
~. _ -1 (_ -~ ) i* , _ :1 i :1
qu',C - mzqq’,C qu;C 94.C (Dz‘qq',C 19 ’szqq',c
SR 1 % -1 3 _ v/ v -1y
Z qq',NC =S wiqq',Nc qu,,NC(D iqq',NC qu,,NC = qu,,NC - qu,,NC,C (qu/lc) qu,,NC,C

~ ==

~ - L =
B 94’,NC — B a.ne T qu',NC,C (qu',C ) (-8B aq’,C ),



Simulation

Use MACML (Bhat, 2011)

4 alternatives, 3 coefficients: 1 fixed, 2 random

Two sets of spatial auto-correlation parameters

2000 observations, 30 datasets with 10 permutation (a total of 300 runs)

gamma profile

o o 0O 0O O o

Comparison with additional restrictive models (spatial ID MDCP spatial homogeneous MDCP and MDCP).
Single permutation is used in comparison due to low approximation error




Simulation Cont..

Qe

B, ~ MVN , (b, ) b= (05 -1 1) o_[08L 054] , 090 0.00]090 060
054 1.00

B 060 0.800.00 0.80

100  050+0.20 050+040| [100 0.70 0.90
§,~MVN(0,A) A=|050+0.20 050+0.80 050+031|=|070 130 081

0.50+0.40 050+0.31 0.50+0.99 090 0.81 1.49
qu = §qk _éql 1.00 0.00 0.00(1.00 0.70 0.90
LAL:\ =

0.70 090 0.00)0.00 0.90 0.20
0.90 0.20 0.80| 0.00 0.00 0.80

(6,=01,5,=02, 5,=0.3 (6,=06,0,=0.7, 5,=0.8) n=17=1 1=17=0)

All the notations are same as mentioned before



Simulation results (Low spatial dependency case)

Parameter Estimates Standard Error Estimates
True
Parameter Value Absolute Finite Asymptotic Approximat

Mean Percentage Sample St. St. Err. Relative ion error

Est. Abs. Bias Bias (APB) Err. (FSSE) (ASE) Efficiency (APERR)

bl 0.5 0.48 0.02 4.00 0.024 0.030 1.25 0.001722
b, -1.0 -1.02 0.02 2.00 0.029 0.028 0.97 0.001781
b, 10 0.99 0.01 1.00 0.023 0.024 1.04 0.001225
Lo 0.9 0.86 0.04 4.44 0.024 0.021 0.88 0.002232
lom 0.6 0.58 0.02 3.33 0.024 0.029 121 0.001310
los 0.8 0.78 0.02 250 0.028 0.031 111 0.001480
V1 1.0 0.98 0.02 2.00 0.038 0.038 1.00 0.003031
V2 10 0.97 0.03 3.00 0.048 0.039 0.82 0.003029
Vs 10 0.96 0.04 4.00 0.049 0.042 0.86 0.003965
Una 0.7 0.70 0.00 0.00 0.025 0.019 0.76 0.001797
e 0.9 0.91 0.01 111 0.023 0.016 0.70 0.001309
Ihs 0.9 0.90 0.00 0.00 0.021 0.018 0.86 0.002493
U an 0.2 0.21 0.01 5.00 0.014 0.016 114 0.002852
e 0.8 0.80 0.00 0.00 0.016 0.012 0.75 0.002362
0, 0.1 0.10 0.00 0.00 0.005 0.004 0.80 0.000065
d, 0.2 0.20 0.00 0.00 0.008 0.006 0.75 0.000175
O3 0.3 0.30 0.00 0.00 0.011 0.008 0.73 0.000324
Overa“p':::;evf:: ACToss 0.01 1.90 0.024 0.022 0.92 0.001832




Simulation results (High s

natial dependency case)

Parameter Estimates Standard Error Estimates
True
Parameter Value Absolute Finite Asymptotic Approximat
Mean Percentage Sample St. St. Err. Relative ion error
Est. Abs. Bias Bias (APB) Err. (FSSE) (ASE) Efficiency (APERR)
bl 0.5 0.48 0.02 4.00 0.041 0.052 1.27 0.000943
b, -1.0 -1.04 0.04 4.00 0.038 0.047 124 0.000792
b, 10 0.98 0.02 2.00 0.022 0.028 127 0.000704
Lo 0.9 0.87 0.03 3.33 0.019 0.023 121 0.000866
lom 0.6 0.58 0.02 3.33 0.053 0.047 0.89 0.001881
lgs 0.8 0.80 0.00 0.00 0.041 0.046 112 0.001093
V1 1.0 0.94 0.06 6.00 0.081 0.082 1.01 0.002657
V2 10 0.96 0.04 4.00 0.085 0.081 0.95 0.001008
Vs 10 0.89 0.11 11.00 0.070 0.054 0.77 0.000640
Una 0.7 0.71 0.01 1.43 0.017 0.017 1.00 0.001736
e 0.9 0.90 0.00 0.00 0.009 0.012 1.33 0.002966
Ihs 0.9 0.89 0.01 111 0.020 0.018 0.90 0.002270
U an 0.2 0.19 0.01 5.00 0.037 0.029 0.78 0.002260
e 0.8 0.83 0.03 3.75 0.019 0.015 0.79 0.001317
0, 0.6 0.60 0.00 0.00 0.048 0.037 0.77 0.000842
d, 0.7 0.69 0.01 1.43 0.109 0.105 0.96 0.001897
O3 0.8 0.74 0.06 7.50 0.110 0.129 1.17 0.005074
Overall mean value across 0.03 3.40 0.048 0.049 1.03 0.001703
parameters




Comparison with restrictive models

e Spatial IID MDCP

1.00 0.50 0.50
050 1.00 0.50
050 0.50 1.00

1.000 0.000 0.000
=L,L, =

A=

0.000 0.866 0.287
0.000 0.000 0.816

0.500 0.866 0.000

1.000 0.500 0.500
0.500 0.287 0.816

e Spatial homogeneous MDCP
All the elements of random coefficient matrix is zero

« MDCP
spatial auto-correlation parameters are zero



Comparison wi

'h restrictive mode

S

SIMDCP* SHMDCP* MDCP#
True Absolute Absolute Absolute
Parameters Value Mean percentage Mean percentage Mean percentage
Est. Bias Est. Bias Est. Bias
(APB) (APB) (APB)
bl 0.5 0.42 16.00 0.36 28.00 0.48 4.00
b, -1.0 -1.07 7.00 -1.02 2.00 -1.01 1.00
b3 1.0 0.98 2.00 0.88 12.00 101 1.00
Zm 0.9 0.89 111 -2 = 0.89 111
/ Q2 0.6 0.63 5.00 = = 0.57 5.00
fem 0.8 0.79 1.25 - - 0.82 2.50
P! 10 0.85 15.00 0.73 27.00 0.66 34.00
V2 1.0 0.81 19.00 0.67 33.00 0.49 51.00
V3 1.0 0.58 42.00 0.26 74.00 0.24 76.00
lAl 0.7 - = 0.85 2143 0.69 1.43
e 0.9 - - 1.25 38.89 0.91 111
1A3 0.9 = = 0.99 10.00 0.90 0.00
lM 0.2 = = 0.32 60.00 0.21 5.00
s 0.8 - - 1.20 50.00 0.85 6.25
51 0.6 0.58 3.33 0.96 60.00 = =
52 0.7 0.71 1.43 0.80 14.29 = =
05 0.8 0.78 2.50 0.64 20.00 = =
(:Z:;::'p‘;‘::l::‘:: 0.09 9.64 0.24 32.19 013 1353
Mean composite log-
likelihood value at -123728.0236 -127060.8099 -124231.3780

convergence

Number of times the
adjusted composite
likelihood ratio test
(ADCLRT) statistic
favors the SMDCP

model?

All thirty timeswhen
compared with
2
Xso0es = 1107
value (mean ADCLRT
statistic is 26.31)

All thirty times when
compared with
2
X300 =11.34
value (mean ADCLRT
statistic is 53.95)

All thirty timeswhen
compared with
2
X300 =11.34
value (mean ADCLRT
statistic is 27.47)

*SIMDCP: Spatial  IID  MDCP
*SHMDCP":  Spatial homogeneous
MDCPR

*MDCP: Aspatial MDCP

The mean composite log-likelihood
value for the high dependency
SMDCP  model at  converged
parameter is -122377.2998.



Inferences from simulation study

e Excellent recovery of parameters by MACML, irrespective of the magnitude of spatial
dependence.

* Finite sample and asymptotic standard errors are also very close

 Ignoring error covariance, or spatial heterogeneity, or spatial dependence has serious impact
on true parameter value

* Finally, Ignoring spatial heterogeneity is of much more serious consequence than ignoring
error covariance effects or spatial lag dynamics
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Data and Variables

 Parcel level land-use inventory data for City of Austin, TX, year 2010.

» Land-use types were aggregated into commercial, industrial, residential and undeveloped
(outside alternative).

 Size of analysis area : 145.91 sqg miles.

 Size of analysis grid : 0.25 X 0.25 miles.

» Explanatory Variables : Road access measures (distance to highways and thoroughfares),
distance to nearest school and hospital,
fraction of area under floodplain,
average elevation of the grid.

» Two Models were estimated and compared : MDCP and SMDCP



Study Area Commercial land-use distribution



Industrial land-use distribution Residential land-use distribution



Table 3a: Descriptive statistics of land-use type investment in the study area

Land-use type Total number Mean land- Number of grids
(%) of grids use area (% of total number) invested....
invested in invested (sq
land-use type? mi)
only in land-use  in other (inside)
type and the land-use types
undeveloped too
land-use state
Commercial 1304 (55) 0.0136 103 (8) 1201 (92)
Industrial 579 (24) 0.0134 52 (9) 527 (91)
Residential 1953 (82) 0.0267 744 (38) 1209 (62)

Undeveloped 2383 (100) 0.0283 197 (8) 2186 (92)



Weight Matrix Selection

» Based on CLIC statistics: Higher the value, better is the weight matrix specification

Weight Matrix Specification

Contiguous Shared Inverse of Inverse of Inverse of
grid boundary continuous continuous continuous
length distance (0.25 distance root distance square
mile distance (0.25 mile (0.25 mile
band) distance band) distance band)
L og-composite likelihood at
convergence -76320.00 -149000.00 -76250.00 -76290.00 -78370.00
Trace Value 628.20 3347.00 530.00 547.50 561.40
CLIC statistics -76948.20 -152347.00 -76780.00 -76837.50 -78931.40

All the results are based on inverse of continuous distance weight matrix specification with a

distance band of 0.25 miles




Estimation results (mean estimates and t-statistics in parenthesis)

Spatial multiple discrete continuous probit (SMDCP) model

Variables
Commercial Industrial Residential
Alternative specific constant -0.488 (-1.15) 1.283 (2.37) -1.715 (-1.79)
Standard deviation 0.442 (4.49) — —
Distance to MoPac (miles) -0.069 (-4.51) 0.169 (3.03) -0.063 (-5.47)
Distance to IH-35 (miles) -0.115 (-3.52) -0.383 (-5.35) 0.039 (4.15)
Standard deviation — — 0.118 (4.42)
Distance to US-183 (miles) — -0.323 (-7.95) —
?r;ﬁ;”)ce B EE R T -0.325 (-2.27) -1.900 (-3.83) 0.251 (2.888)
Standard deviation _ 2883 (649) T
Distance to Hospital (miles) -0.255 (-7.11) 0.224 (3.44) 0.027 (1.58)
Distance to School (miles) -0.216 (-3.49) 0.536 (3.33) -0.455 (-10.51)
Di h hf
/Sza:::etg;lesf Itai zroug ae -0.358 (-8.88) -0.372 (-2.98) 0.090 (4.13)
pan 0.246 (2.15) 0.416 (2.13) 0.165 (6.42)
Standard deviation
Fraction of area under floodplain in -0.015 (-8.92) -0.022 (-5.41) -0.010 (-9.70)
the grid
E\Z‘;at'on indicator variable (high or -0.265 (-4.51) -1.429 (-7.74) 0.180 (3.50)
Standard deviation 0.989 (6.57) o T
CBD indicator variable — -1.079 (-2.55) -0.776 (-6.84)
Satiation parameter 8.873 (19.01) 3.502 (10.56) 44,939 (14.47)
Spatial lag 0.300 (2.36) 0.623 (2.09) 0.477 (4.95)




Fffect of Variables on the Utility of Alternative

Spatial multiple discrete continuous probit (SMDCP) model
Variables
Commercial Industrial Residential

Alternative specific constant o o o
Distance to MoPac (miles) positive negative positive

. . ositive ositive negative
Distance to IH-35 (miles) P P 9

. ) — ositive —
Distance to US-183 (miles) P
Distance to nearest thoroughfare o o .

. positive positive negative

(miles)
Distance to Hospital (miles) positive negative negative
Distance to School (miles) positive negative positive
Distance to nearest thoroughfare
/Distance to floodplain positive positive negative
Fraction of area under floodplainin negative negative negative
the grid
Elevation indicator variable (high or negative negative positive
low)
CBD indicator variable _ negative negative




Land Use Commercial Industria Residential
Commercial 1.000 1.445 0.204
(fixed) (4.33) (2.30)
. 5.375 0.138
Industrial (322) (2.66)
. . 0.596
Residentia (4.94)
Moddl Composite # of parameters ADCLRT
Likelihood value estimated Statistics
MDCP -76320.00 40
34.72
SMDCP -76250.00 48

*The ADCLRT statistics is greater than chi-square critical value at 8 degree’s of freedom for

any level of significance.




Flasticity Comparison

» We compute the elasticity effect for each of the variable for both MDCP and
SMDCP model.

» Continuous variables are increased by 25%



-|astic

ty Com

Oal

SON

S Commercial Industrial Residential Undeveloped
MDCP SMDCP P MDCP SMDCP P MDCP SMDCP P MDCP SMDCP P
A 25%1 indist
. Mo;;lazcreasem ISENCE | 492 (061) 810 (153) 0.0005 1099(0.92) | 17.75 (4.94) 0.0005 -4.60 (0.22) 761 (0.62) 0.0005 028 (017) | 041034 | 0.0400
A 25% increase in distance
o -2.86(0.78) -0.26 (5.49) 0.0240 1095 (147) | -23.21(4.16) 0.0005 751 (037) | 1181 (187) 0.0005 029 (024) | 0410073 —
A 25%i in dist
o) S"l';;rease'n ISENCe | 348 (0.79) 7.46 (5.44) 0.0030 811 (08]) | -20.44(2.66) 0.0005 146 (024) | 332 (0.90) 0.0005 015 (022 | 038059 | 0.0400
A 25%i in dist
0INCTEASEIN AISKANCe |, 31 (0 63) -3.04 (8.03) 0.1800 482 (164) | -1324(7.02) 0.0005 385 (027) | 906 (166) 0.0005 014 (020) | 006(086) | 0.1700
to nearest thoroughfare
2 —
Sincreseindistance | ¢ o0 036 | _11.30(1.80) 0.0005 1143(163) | 2029 (5.73) 0.0005 097 0220 | 079 (067) 0.1300 007 (013) | 001(033) —
to nearest hospital
A 25%i in dist
oIncreaseInAISIance |- 3 o8 (0.58) -6.79 (2.15) 0.0005 505 (086) | 962 (289) 0.0005 653(022) | -1270(0.79) 0.0005 060 (017) | 102(040) | 0.0005
to nearest school
A 25% increase in distance
to nearest thoroughfare and
e o | 538(05Y) 671 (5.83) 0.1700 099 (156) | -9.26 (6.15) 0.0005 696 (034) | 1294 (163) 0.0005 008 (019) | 023(068 | 0.1900
to floodplain
A 25% increasein fraction
of areaunder floodplainin | -1.20(0.19) -1.00 (1.12) — 177 (038) | -559 (1.16) 0.0005 -1.23(0.08) -2.28 (0.36) 0.0005 034 007) | 063022 | 0.0005
the grid
A switch of the grid
location from|
ocation from [ower 36.72(4.98) | 143.40(19.66) 0.0005 4246272 | -7483(237) 0.0005 4088(181) | 116.20 (22.67) 0.0005 004 087 | 172751 | 0.1800
elevation to higher
elevation
A switch of the grid
location from non CBD 1905(L24) | 34.67(19.75) 0.0005 -64.71(228) | -88.63(3.04) 0.0005 -50.55(0.57) | -75.72(1.80) 0.0005 6.87 (053) | 1089(257) | 0.0005
zoneto CBD zone




Elasticity Comparison Cont..

» General trend : lower elasticity projections from the aspatial model (MDCP),
manifestation of neglecting spatial dependencies

o Elasticity effects are opposite in direction for some variable (elasticity effect for
industrial land use due to change in distance to nearest thoroughfare)

o Elasticity effects can be misleading, if spatial interactions are neglected.



Conclusion

» Developed a spatial multiple discrete continuous model which accommodates
spatial interactions, spatial heterogeneity and error covariance

« MACML estimator is being proposed for estimation as oppose to traditional
simulation techniques

e Simulation results shows MACML's excellent capability of recovering parameters
irrespective of magnitude of spatial dependency

e Ignoring error covariance, or spatial heterogeneity, or spatial dependency, when
present can lead to biased estimation

 Better data fit through spatial model than aspatial model
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