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Introduction



Land Use Modeling
• Land-use models are used in many fields

• Planning, 
• Urban science, 
• Ecological science, 
• Climate science, 
• Geography, 
• Watershed hydrology, 
• Environmental science, 
• Political science, and 
• Transportation 

Ottawa Downtown: Taken from 
www.dreamstime.com

Taken from 
www.greateryellowstone.com



Why is Land Use Modeling Important?

• Used to examine future land-use scenarios

• Evaluate potential effects of policies

• Recently, substantial attention on 
• Biodiversity loss,
• Deforestation consequences, and 
• Carbon emissions increases caused by land-use development

• Land-use patterns constitute one of the most important “habitat” elements 
characterizing Earth’s terrestrial and aquatic ecosystems



Objectives



Objectives

• Develop new econometric approach to specify and estimate a land-use change 
model

• Capable of predicting both the type and intensity of urban development patterns 
over large geographic areas

• Explicitly acknowledges geographic proximity-based spatial dependencies in these 
patterns



Methodological Perspective
• Specification and estimation of a spatial multiple discrete-continuous probit

(MDCP) model 

• Allows the dependent variable to exist in multiple discrete states with an 
intensity associated with each discrete state

• Accommodates 
• Spatial dependencies, 
• Spatial heterogeneity,
• Heteroscedasticity, in the dependent variable

• Applicable where social and spatial dependencies between decision agents 
(or observation units) lead to spillover effects in multiple discrete-
continuous choices (or states)



Empirical Perspective

• Model land-use in multiple discrete states

• Along with the area invested in each land-use discrete state, 
within each spatial unit in an entire urban region

• Hybrid of three different strands of model types (pattern, 
process and spatial-based models) used in the land-use analysis 
literature



Empirical Context



Earlier Literature

• Three Modeling Approaches
• Pattern-based Models
• Process-based Models
• Spatial-based Models



Pattern Based Models

• Developed by geographers and natural scientists

• Well suited for land-use modeling over relatively large geographic extents (such as 
urban regions or entire states or even countries)

• Unit of analysis: Aggregated Spatial Unit (Large grid, TAZ, Census Tract, County or 
State)

• Two types

• Cellular automata-based Models

• Empirical models at aggregated spatial unit level



Cellular Automata-based Models
• Hypothesizes the nature of the deterministic or probabilistic updating functions

• Simulates the states of cells over many “virtual” time periods, 

• Aggregates up the states of the cells at the end to obtain land-use patterns

• Limitations

• Updating functions not based on actual data  no direct evidence linking 
the updating mechanism at the cell level to the spatial evolution of land-
use patterns at the aggregate spatial unit level

• Do not use exogenous variables such as socio-demographic characteristics 
of spatial units, transportation network features, and other environmental 
features Policy value is extremely limited



Empirical models at Aggregated Spatial Unit Level

• Relates transportation network, pedoclimatic, biophysical and accessibility
variables to land-use patterns

• Can be used in a simulation setting to predict land-use patterns in response to
different exogenously imposed policy scenarios

• Not formulated in a manner that appropriately recognizes the multiple
discrete-continuous nature of land-use patterns in the aggregated spatial units

• Do not adequately consider population characteristics of spatial units in
explaining land-use patterns within that unit



Process-based Models

• Developed by economists

• Well suited for modeling landowners’ decisions of land-use type choice for their 
parcels

• Unit of analysis: Land-owner is considered as an economic agent

• Considers the human element in land-use modeling

• Forward-looking inter-temporal land use decisions based on profit-maximizing 
behavior



Process-based Models
• Difficulties incorporating spatial considerations at this micro-level

• High data and computing demands when analysis is being conducted at the 
level of entire urban regions or states in a country 

• Presence of land-use and zoning regulations  Individual landowners may 
not have carte blanche authority 

• Multiple parcels under the purview of a single decision-making agent 
Multiple parcels in close proximity tend to get similarly developed



Spatial-based models
• Emphasis on spatial dependence among spatial units (in pattern-based models) or 

among landowners (in process-based models) 

• Caused by diffusion effects, or zoning and land-use regulation effects, or social 
interaction effects, or observed and unobserved location-related influences 

• Two most dominant spatial formulations  Spatial lag and spatial error formulations
• Spatial lag structure

• Considers spillover effects caused by observed exogenous variables at one spatial location 
influencing land-use patterns in adjacent locations

• Generates spatial heteoscedasticity. 



Spatial-based models

• Spatial heterogeneity  Differences in relationships between the 
dependent variable and the independent variables across decision-
makers or spatial units in a study region

• Essential to accommodate local variations (i.e., recognize spatial non-
stationarity) in the relationship across a study region rather than settle 
for a single global relationship



Econometric 
Considerations



Past Studies 
• In the past decade , much emphasis has been placed on accommodating

spatial correlation in binary/ordered models (spatial regression models,
weighted geographic regression, spatial probit and spatial tobit).

• Estimation has mostly been done using simulation techniques (GHK and
Bayesian MCMC).

• Standard RIS and MCMC-based simulators are cumbersome to implement in 
typical empirical contexts



RECENT ADVANCES

• Spatial land use change model for unordered choice case, including spatial
lag dependency, random heterogeneity, and general covariance matrix.

• A new estimation technique has been proposed (MACML, Bhat(2012)).



Transition
• Discrete choice field has moved forward from ordered/unordered cases to

multiple discrete-continuous models.

• A realistic representation of choices made in real-life.



Multiple discrete-continuous choice models 
(MDC)

• Capable of accommodating multiple choices



Model Formulation



Utility function

U(xq) is a quasi-concave, increasing, and continuously differentiable function with 
respect to the consumption quantity vector x

αqk , γqk and      are parameters associated with alternative k for decision maker q
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Utility function
• Role of 

: baseline (at zero consumption/investment) marginal utility, should always be positive

: Investment/consumption value of an alternative k (inside good) by decision maker q

: marginal rate of substitution at zero consumption

Higher baseline implies less likelihood of a corner solution for an alternative k
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Utility function
• Role of )( 0>qkqk γγ
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• Indifference Curves 
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Utility function
• Role of )( 0>qkqk γγ

qkγ
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Utility function
• Role of qkα
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KKT first order condition (MDCP)
Since only differences in the logarithm of the baseline utilities matter, we subtract the logarithm of baseline
utility of outside alternative from k-1 inside alternatives and normalize the logarithm of the baseline utility
for the outside alternative to zero. Baseline utility is parameterized to ensure positive value of baseline utility

b

Baseline Utility
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KKT first order condition (MDCP) cont..
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KKT first order condition (SMDCP)
We introduce the spatial auto-correlation through baseline utility as follow: 
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Model Estimation



Model Estimation
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Model Estimation Cont..

With further re-arrangement, we can write the likelihood function as follow:
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• The likelihood function involves integration of dimension equal to number of non-chosen alternatives
• Very high dimensional integration
• Traditional simulation techniques such as Bayesian inference method and Maximum simulated likelihood

are not suitable
• We use Bhat’s Maximum Approximate Composite Marginal Likelihood (MACML) inference approach.

Model Estimation Cont..
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Simulation
 Use MACML (Bhat, 2011) 

 4 alternatives, 3 coefficients: 1 fixed, 2 random

 Two sets of spatial auto-correlation parameters 

 2000 observations, 30 datasets with 10 permutation (a total of 300 runs) 

 gamma profile

 Comparison with additional restrictive models (spatial IID MDCP, spatial homogeneous MDCP and MDCP). 
Single permutation is used in comparison due to low approximation error



Simulation Cont..
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Simulation results (Low spatial dependency case)

Parameter
True 
Value

Parameter Estimates Standard Error Estimates

Mean 
Est. Abs. Bias

Absolute 
Percentage 
Bias (APB)

Finite 
Sample St. 

Err. (FSSE)

Asymptotic 
St. Err. 
(ASE)

Relative
Efficiency

Approximat
ion error 
(APERR)

0.5 0.48 0.02 4.00 0.024 0.030 1.25 0.001722
-1.0 -1.02 0.02 2.00 0.029 0.028 0.97 0.001781
1.0 0.99 0.01 1.00 0.023 0.024 1.04 0.001225
0.9 0.86 0.04 4.44 0.024 0.021 0.88 0.002232
0.6 0.58 0.02 3.33 0.024 0.029 1.21 0.001310
0.8 0.78 0.02 2.50 0.028 0.031 1.11 0.001480
1.0 0.98 0.02 2.00 0.038 0.038 1.00 0.003031
1.0 0.97 0.03 3.00 0.048 0.039 0.82 0.003029
1.0 0.96 0.04 4.00 0.049 0.042 0.86 0.003965
0.7 0.70 0.00 0.00 0.025 0.019 0.76 0.001797
0.9 0.91 0.01 1.11 0.023 0.016 0.70 0.001309
0.9 0.90 0.00 0.00 0.021 0.018 0.86 0.002493
0.2 0.21 0.01 5.00 0.014 0.016 1.14 0.002852
0.8 0.80 0.00 0.00 0.016 0.012 0.75 0.002362
0.1 0.10 0.00 0.00 0.005 0.004 0.80 0.000065
0.2 0.20 0.00 0.00 0.008 0.006 0.75 0.000175
0.3 0.30 0.00 0.00 0.011 0.008 0.73 0.000324

Overall mean value across 
parameters

0.01 1.90 0.024 0.022 0.92 0.001832

1b
2b
3b
1Ωl

2Ωl

3Ωl

1γ

2γ

3γ

1Λl

2Λl

3Λl

4Λl

5Λl
1δ

2δ

3δ



Simulation results (High spatial dependency case)

Parameter
True 
Value

Parameter Estimates Standard Error Estimates

Mean 
Est. Abs. Bias

Absolute 
Percentage 
Bias (APB)

Finite 
Sample St. 

Err. (FSSE)

Asymptotic 
St. Err. 
(ASE)

Relative
Efficiency

Approximat
ion error 
(APERR)

0.5 0.48 0.02 4.00 0.041 0.052 1.27 0.000943
-1.0 -1.04 0.04 4.00 0.038 0.047 1.24 0.000792
1.0 0.98 0.02 2.00 0.022 0.028 1.27 0.000704
0.9 0.87 0.03 3.33 0.019 0.023 1.21 0.000866
0.6 0.58 0.02 3.33 0.053 0.047 0.89 0.001881
0.8 0.80 0.00 0.00 0.041 0.046 1.12 0.001093
1.0 0.94 0.06 6.00 0.081 0.082 1.01 0.002657
1.0 0.96 0.04 4.00 0.085 0.081 0.95 0.001008
1.0 0.89 0.11 11.00 0.070 0.054 0.77 0.000640
0.7 0.71 0.01 1.43 0.017 0.017 1.00 0.001736
0.9 0.90 0.00 0.00 0.009 0.012 1.33 0.002966
0.9 0.89 0.01 1.11 0.020 0.018 0.90 0.002270
0.2 0.19 0.01 5.00 0.037 0.029 0.78 0.002260
0.8 0.83 0.03 3.75 0.019 0.015 0.79 0.001317
0.6 0.60 0.00 0.00 0.048 0.037 0.77 0.000842
0.7 0.69 0.01 1.43 0.109 0.105 0.96 0.001897
0.8 0.74 0.06 7.50 0.110 0.129 1.17 0.005074

Overall mean value across 
parameters

0.03 3.40 0.048 0.049 1.03 0.001703

1b
2b
3b
1Ωl

2Ωl

3Ωl

1γ

2γ

3γ

1Λl

2Λl

3Λl

4Λl

5Λl
1δ

2δ

3δ



• Spatial IID MDCP

• Spatial homogeneous MDCP
All the elements of random coefficient matrix is zero

• MDCP
spatial auto-correlation parameters are zero

Comparison with restrictive models
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Comparison with restrictive models
Parameters

True 
Value

SIMDCP* SHMDCP+ MDCP#

Mean         
Est.

Absolute 
percentage 

Bias           
(APB)

Mean         
Est.

Absolute 
percentage 

Bias           
(APB)

Mean        
Est.

Absolute 
percentage 

Bias          
(APB)

0.5 0.42 16.00 0.36 28.00 0.48 4.00
-1.0 -1.07 7.00 -1.02 2.00 -1.01 1.00
1.0 0.98 2.00 0.88 12.00 1.01 1.00
0.9 0.89 1.11 -a - 0.89 1.11
0.6 0.63 5.00 - - 0.57 5.00
0.8 0.79 1.25 - - 0.82 2.50
1.0 0.85 15.00 0.73 27.00 0.66 34.00
1.0 0.81 19.00 0.67 33.00 0.49 51.00
1.0 0.58 42.00 0.26 74.00 0.24 76.00
0.7 - - 0.85 21.43 0.69 1.43
0.9 - - 1.25 38.89 0.91 1.11
0.9 - - 0.99 10.00 0.90 0.00
0.2 - - 0.32 60.00 0.21 5.00
0.8 - - 1.20 50.00 0.85 6.25
0.6 0.58 3.33 0.96 60.00 - -
0.7 0.71 1.43 0.80 14.29 - -
0.8 0.78 2.50 0.64 20.00 - -

Overall mean value 
across parameters 0.09 9.64 0.24 32.19 0.13 13.53

Mean composite log-
likelihood value at 

convergence
-123728.0236 -127060.8099 -124231.3780

Number of times the 
adjusted composite 
likelihood ratio test 
(ADCLRT) statistic 
favors the SMDCP 

modelb

All thirty times when 
compared with  

value (mean ADCLRT 
statistic is 26.31)

All thirty times when 
compared with  

value (mean ADCLRT 
statistic is 53.95)

All thirty times when 
compared with  

value (mean ADCLRT 
statistic is 27.47)

1b
2b
3b

1Ωl
2Ωl
3Ωl

1γ
2γ
3γ

1Λl
2Λl
3Λl
4Λl
5Λl
1δ
2δ
3δ

07112
95.0,5 .=χ 34.112

99.0,3 =χ 34.112
99.0,3 =χ

*SIMDCP: Spatial IID MDCP.
+SHMDCP*: Spatial homogeneous
MDCP,
#MDCP: Aspatial MDCP.
The mean composite log-likelihood
value for the high dependency
SMDCP model at converged
parameter is -122377.2998.



Inferences from simulation study
• Excellent recovery of parameters by MACML, irrespective of the magnitude of spatial

dependence.

• Finite sample and asymptotic standard errors are also very close

• Ignoring error covariance, or spatial heterogeneity, or spatial dependence has serious impact
on true parameter value

• Finally, Ignoring spatial heterogeneity is of much more serious consequence than ignoring
error covariance effects or spatial lag dynamics



Empirical Application



Data and Variables
• Parcel level land-use inventory data for City of Austin, TX, year 2010.
• Land-use types were aggregated into commercial, industrial, residential and undeveloped 

(outside alternative).
• Size of analysis area : 145.91 sq miles.
• Size of analysis grid : 0.25 X 0.25 miles.
• Explanatory Variables : Road access measures (distance to highways and thoroughfares),

distance to nearest school and hospital,
fraction of area under floodplain,
average elevation of the grid.

• Two Models were estimated and compared : MDCP and SMDCP



Commercial land-use distributionStudy Area



Residential land-use distributionIndustrial land-use distribution 



Land-use type Total number 
(%) of grids 
invested in 

land-use typea

Mean land-
use area 

invested (sq 
mi)

Number of grids 
(% of total number) invested….

only in land-use 
type and the 
undeveloped 
land-use state

in other (inside) 
land-use types 

too

Commercial 1304 (55) 0.0136 103 (8) 1201 (92)
Industrial 579 (24) 0.0134 52 (9) 527 (91)
Residential 1953 (82) 0.0267 744 (38) 1209 (62)
Undeveloped 2383 (100) 0.0283 197 (8) 2186 (92)

Table 3a: Descriptive statistics of land-use type investment in the study area



Weight Matrix Selection
• Based on CLIC statistics: Higher the value, better is the weight matrix specification

Weight Matrix Specification
Contiguous 

grid
Shared 

boundary 
length

Inverse of 
continuous 

distance (0.25 
mile distance 

band)

Inverse of 
continuous 

distance root 
(0.25 mile 

distance band)

Inverse of 
continuous 

distance square 
(0.25 mile 

distance band)

Log-composite likelihood at 
convergence -76320.00 -149000.00 -76250.00 -76290.00 -78370.00

Trace Value 628.20 3347.00 530.00 547.50 561.40
CLIC statistics -76948.20 -152347.00 -76780.00 -76837.50 -78931.40

•All the results are based on inverse of continuous distance weight matrix specification with a
distance band of 0.25 miles



Estimation results (mean estimates and t-statistics in parenthesis)
Variables

Spatial multiple discrete continuous probit (SMDCP) model
Commercial Industrial Residential

Alternative specific constant
Standard deviation

-0.488 (-1.15)
0.442 (4.49)

1.283 (2.37)
—

-1.715 (-1.79)
—

Distance to MoPac (miles) -0.069 (-4.51) 0.169 (3.03) -0.063 (-5.47)

Distance to IH-35 (miles)
Standard deviation

-0.115 (-3.52)
—

-0.383 (-5.35)
—

0.039 (4.15)
0.118 (4.42)

Distance to US-183 (miles) — -0.323 (-7.95) —

Distance to nearest thoroughfare 
(miles)

Standard deviation

-0.325 (-2.27)
—

-1.900 (-3.83)
2.883 (6.45)

0.251 (2.888)
—

Distance to Hospital (miles) -0.255 (-7.11) 0.224 (3.44) 0.027 (1.58)

Distance to School (miles) -0.216 (-3.49) 0.536 (3.33) -0.455 (-10.51)

Distance to nearest thoroughfare 
/Distance to floodplain

Standard deviation

-0.358 (-8.88)
0.246 (2.15)

-0.372 (-2.98)
0.416 (2.13)

0.090 (4.13)
0.165 (6.42)

Fraction of area under floodplain in 
the grid

-0.015 (-8.92) -0.022 (-5.41) -0.010 (-9.70)

Elevation indicator variable (high or 
low)

Standard deviation

-0.265 (-4.51)
0.989 (6.57)

-1.429 (-7.74)
—

0.180 (3.50)
—

CBD indicator variable — -1.079 (-2.55) -0.776 (-6.84)

Satiation parameter 8.873 (19.01) 3.502 (10.56) 44.939 (14.47)

Spatial lag 0.300 (2.36) 0.623 (2.09) 0.477 (4.95)



Effect of Variables on the Utility of Alternative
Variables

Spatial multiple discrete continuous probit (SMDCP) model
Commercial Industrial Residential

Alternative specific constant
— — —

Distance to MoPac (miles) positive negative positive

Distance to IH-35 (miles)
positive positive negative

Distance to US-183 (miles)
— positive —

Distance to nearest thoroughfare 
(miles)

positive positive negative

Distance to Hospital (miles) positive negative negative

Distance to School (miles) positive negative positive

Distance to nearest thoroughfare 
/Distance to floodplain positive positive negative

Fraction of area under floodplain in 
the grid

negative negative negative

Elevation indicator variable (high or 
low)

negative negative positive

CBD indicator variable
—

negative negative



Error covariance and Model Comparison
Land Use Commercial Industrial Residential

Commercial
1.000
(fixed)

1.445
(4.33)

0.204
(2.30)

Industrial
5.375
(3.22)

0.138
(2.66)

Residential
0.596
(4.94)

Model
Composite

Likelihood value
# of parameters 

estimated
ADCLRT 
Statistics

MDCP -76320.00 40

34.72

SMDCP -76250.00 48

•The ADCLRT statistics is greater than chi-square critical value at 8 degree’s of freedom for 
any level of significance.



Elasticity Comparison
• We compute the elasticity effect for each of the variable for both MDCP and 

SMDCP model.

• Continuous variables are increased by 25%



Elasticity Comparison 
Scenario

Commercial Industrial Residential Undeveloped
MDCP SMDCP P+ MDCP SMDCP P MDCP SMDCP P MDCP SMDCP P

A 25% increase in distance 
to MoPac

-4.92 (0.61) -8.10  (1.53) 0.0005 10.99 (0.92) 17.75  (4.94) 0.0005 -4.60 (0.22) -7.61  (0.62) 0.0005 0.28  (0.17) 0.41 (0.34) 0.0400

A 25% increase in distance 
to IH35

-2.86 (0.78) -0.26  (5.49) 0.0240 -10.95   (1.47) -23.21 (4.16) 0.0005 7.51  (0.37) 11.81  (1.87) 0.0005 0.29  (0.24) 0.41 (0.73) —*

A 25% increase in distance 
to US-183

3.48  (0.78) 7.46   (5.44) 0.0030 -8.11  (0.81) -20.44 (2.66) 0.0005 1.46  (0.24) 3.32    (0.90) 0.0005 0.15  (0.22) 0.38 (0.59) 0.0400

A 25% increase in distance 
to nearest thoroughfare

-1.31 (0.63) -3.04  (8.03) 0.1800 4.82   (1.64) -13.24 (7.02) 0.0005 3.85  (0.27) 9.06    (1.66) 0.0005 0.14  (0.20) 0.06 (0.86) 0.1700

A 25% increase in distance 
to nearest hospital

-6.97   (0.36) -11.30 (1.80) 0.0005 11.43 (1.63) 20.29  (5.73) 0.0005 0.97  (0.22) 0.79    (0.67) 0.1300 0.07  (0.13) 0.01 (0.33) —

A 25% increase in distance 
to nearest school

-3.88 (0.58) -6.79  (2.15) 0.0005 5.05   (0.86) 9.62    (2.89) 0.0005 -6.53 (0.22) -12.70 (0.79) 0.0005 0.60  (0.17) 1.02 (0.40) 0.0005

A 25% increase in distance 
to nearest thoroughfare and 
a 25% decrease in distance 
to floodplain

-5.38 (0.55) -6.71  (5.83) 0.1700 -0.99  (1.56) -9.26   (6.15) 0.0005 6.96  (0.34) 12.94  (1.63) 0.0005 0.08  (0.19) 0.23 (0.68) 0.1900

A 25% increase in fraction 
of area under floodplain in 
the grid

-1.20 (0.19) -1.00  (1.11) — -1.77  (0.38) -5.59  (1.16) 0.0005 -1.23 (0.08) -2.28  (0.36) 0.0005 0.34  (0.07) 0.63 (0.22) 0.0005

A switch of the grid 
location from lower 
elevation to higher 
elevation

36.72 (4.98) 143.40 (19.66) 0.0005 -42.46 (2.72) -74.83 (2.37) 0.0005 40.88 (1.81) 116.20 (22.67) 0.0005 0.04  (0.87) 1.72 (7.51) 0.1800

A switch of the grid 
location from non CBD 
zone to CBD zone

19.05 (1.24) 34.67 (19.75) 0.0005 -64.71 (2.28) -88.63 (3.04) 0.0005 -50.55 (0.57) -75.72 (1.80) 0.0005 6.87  (0.53) 10.89 (2.57) 0.0005



Elasticity Comparison Cont..
• General trend : lower elasticity projections from the aspatial model (MDCP),

manifestation of neglecting spatial dependencies

• Elasticity effects are opposite in direction for some variable (elasticity effect for
industrial land use due to change in distance to nearest thoroughfare)

• Elasticity effects can be misleading, if spatial interactions are neglected.



Conclusion
• Developed a spatial multiple discrete continuous model which accommodates 

spatial interactions, spatial heterogeneity and error covariance

• MACML estimator is being proposed for estimation as oppose to traditional 
simulation techniques

• Simulation results shows MACML’s excellent capability of recovering parameters 
irrespective of magnitude of spatial dependency

• Ignoring error covariance, or spatial heterogeneity, or spatial dependency, when 
present can lead to biased estimation 

• Better data fit through spatial model than aspatial model
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